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Abstract—This paper explores algorithmic approaches using 
the graph theory of minimum spanning tree and basic graph 
traversal algorithms for generating and solving perfect mazes. We 
will analyze various algorithms including methods like Prim’s 
algorithm and breadth-first search and evaluate their properties 
in creating solutions. A perfect maze is a specific type of complex 
passage network characterized by the inexistence of circuits and a 
unique path between any two points with no isolated paths. To 
generate such structure, randomized prims algorithm was applied 
by treating each maze cell as graph vertex and potential walls as 
removable edges. The maze is iteratively generated by connecting 
unvisited cells through arbitrarily selected walls. For solving the 
generated maze, the breadth first search approach was used due 
to its ability to guarantee the shortest path in unweighted graphs. 
The entire implementation was conducted in Python, using 
NumPy for grid operations and Matplotlib for visualizing the 
results. Obtained results prove that the proposed method 
successfully generates and solves randomized perfect mazes. 

Keywords—graph theory; minimum spanning tree; maze 
generation; perfect maze 

I.  INTRODUCTION 
A maze is an intricate and confusing set of connecting routes 

in which it is hard to find one’s exit. A maze is related to fields 
such as robotics, animal studies, or spiritual and recreational 
activities. A perfect maze is defined as a complex network with 
inexistence of circuits and a unique path between any two points 
with only one possible solution. The layout of the maze itself is 
often used as a basic model for various problems related to 
pathfinding and navigation. 

 
Figure 1. Maze Example. Adapted from [2]. 

This paper explores algorithmic approaches using the graph 
theory of minimum spanning tree and basic graph traversal 
algorithms for generating and solving perfect mazes. We will 
analyze various algorithms including methods like Prim’s 
algorithm and breadth-first search and evaluate their properties 
in creating solutions. 

II. THEORETICAL BASIS 

A. Graph 
1) Graph Definition 
A graph G = (V, E) is a mathematical structure that is 

consisted of a non-empty set of vertices V and a set of edges E. 
In this context, each vertex represents a cell or intersection and 
each edge represents a possible route or connection between 
two adjacent cells.  

 

 
Figure 2. Simple Graph Example. Adapted from [1]. 
2) Graph Terminology 
Graphs can be classified into multiple types based on the 

properties of their edges. A simple graph is undirected and is 
not allowed to have multiple edges and loops. A multigraph is 
undirected and is allowed to have multiple edges but no loops. 
A pseudograph is undirected and is allowed to have multiple 
edges and loops. There exist simple directed graphs, directed 
multigraph, and mixed graphs for directed graphs. We focus 
mainly on undirected graphs, as the layout of a maze is 
undirected, each passage between cells can be traversed in both 
directions. 

3) Graph Representation 
There are several methods to represent a graph: 

1. Adjacency Matrices 
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The adjacency matrix A of undirected graph G is a 
zero-one matrix with 1 as its (i, j)th entry when 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 
are adjacent, and 0 if otherwise. If A is = [𝑎𝑎𝑖𝑖𝑖𝑖], then 

 
𝑎𝑎𝑖𝑖𝑖𝑖

=  � 1, 𝑖𝑖𝑖𝑖 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑖𝑖� 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑖𝑖 𝐺𝐺,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒.                             

 (1) 

 
For example, the graph in figure 2 adjacency matrix is: 

⎣
⎢
⎢
⎢
⎡
0 1 1 0 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 1
1 0 1 1 0⎦

⎥
⎥
⎥
⎤
 

with ordering of vertices a, b, c, d, e respectively. 
 

2. Adjacency List 
The adjacency lists of undirected graph G is a lists of 

vertices that are adjacent to each vertex of the graph. For 
example, the adjacency lists for the graph in figure 2 are: 

Vertex Adjacent Vertices 

a b, c, e 

b a 

c a, d, e 

d c, e 

e a, c, d 

 
3. Incidence Matrices 

The incidence matrix of undirected graph G is a zero-
one matrix with 1 as its (i, j)th entry when 𝑣𝑣𝑖𝑖 and 𝑒𝑒𝑖𝑖 are 
incident, and 0 if otherwise. If M is = [𝑚𝑚𝑖𝑖𝑖𝑖], then 

 𝑚𝑚𝑖𝑖𝑖𝑖 =  �
 1, 𝑒𝑒ℎ𝑒𝑒𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑖𝑖  𝑖𝑖𝑖𝑖 𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑎𝑎𝑜𝑜 𝑒𝑒𝑖𝑖𝑜𝑜ℎ 𝑣𝑣𝑖𝑖 ,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒.                                          

 (2) 

B. Tree 
1) Tree Definition 
A tree is an undirected graph that is connected and does not 

contain multiple edges or loops. Any tree must be a simple 
graph. An undirected graph is a tree if and only if there is a 
unique path between any two of its vertices. These properties 
align perfectly with the definition of a maze, in which there 
exists a unique path between any two given points. Therefore, 
a maze can be modeled as a spanning tree over the grid-shaped 
graph that represents the grid of cells. This connection forms 
the basis for using minimum spanning trees algorithms in maze 
generation. 

 
Figure 3. Rooted Tree Example. Adapted from [1]. 

 
A rooted tree is a tree where a vertex are acting as the root 

and other edges are directed away from the root. A rooted tree 
is called an m-ary tree if every internal vertex has no more than 
m direct descendants. A full m-ary tree means every internal 
vertex of that tree has exactly m children. 

2) Application of Trees 
Binary search trees is an efficient searching algorithm for 

ordered elements. Each child of a vertex is assigned as a right 
or left child. Vertices represent elements and are given values 
so that the value of a vertex is both bigger than the values of all 
vertices in its subtree on the left and smaller than the values of 
all vertices in its subtree on the right. 

 
Figure 4. Simple Graph G. Adapted from [1]. 

 
3) Spanning Trees and Minimum Spanning Trees 
A spanning tree of simple graph G is a subgraph of G that 

is a tree containing every vertex of G. Spanning trees of graph 
G can be found by removing edges that form simple circuits. 
 

 
Figure 5. Spanning Trees of G. Adapted from [1]. 

 
A maze can be formed into a spanning tree of the grid-

shaped graph. Creating a spanning tree guarantees 
connectivity and inexistence of circuits. 

A minimum spanning tree in a weighted graph is a 
spanning tree where the total values of the edges weights in 
the tree is a minimum. A wide variety of problems are solved 
using various algorithms for finding minimum spanning trees, 
such as: 
1. Prim’s Algorithm 
procedure Prim (input G:  Graph, output T: Tree) 
{I.S. G is an undirected graph with n vertices that is 
connected and has weights in each of its vertices.} 
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{F.S. A minimum spanning tree of graph G} 
 
ALGORITHM 
T ← edge with the least weight in graph G 
i traversal [1..(n-2)] 
      e ← a minimum-weight edge incident to a vertex 
in T  
      {e must not form a simple circuit if added to T } 
      T ← T added with e 

 
2. Kruskal’s Algorithm 
procedure Kruskal (input G:  Graph, output T: Tree) 
{I.S. G is an undirected graph with n vertices that is 
connected and has weights in each of its vertices.} 
{F.S. A minimum spanning tree of graph G} 
 
ALGORITHM 
T ← empty 
i traversal [1..(n-1)] 
      e ← any minimum-weight edge in G 
     {e must not form a simple circuit if added to T } 
      T ← T added with e 

C. Graph Traversal Algorithm 
Graph traversal algorithms are methods used to visit every 

vertex and edge in a graph. These methods are necessary for 
various applications such as pathfinding, topological sorting, 
and in this context, maze solving. While the previous minimum 
spanning tree algorithms are used to generate the perfect maze 
structure, graph traversal algorithms provide ways to find the 
shortest path from the entrance to the exit point of the maze. 
 

 
Figure 6. DFS and BFS Illustration. Adapted from [3]. 

 
1. Breadth-First Search 

Breadth-first search explores all the neighboring vertices at 
current depth before it continues to the vertices at the next level. 
2. Depth-First Search 

Depth-first search explores start at a chosen starting vertex 
and explores as far as it can along each branch before going 
back to go to another branch. This approach makes it 
particularly intuitive for navigating maze structures. 

III. PROBLEM DEFINITION AND SOLUTION 

A. Problem Definition 
A perfect maze is a specific type of complex passage network 
characterized by the inexistence of circuits and a unique path 
between any two points with no isolated paths. When formed as 
a graph, the structure of the maze simplifies certain 
computational problems. The main problem in this paper 
centers on the generation of perfect mazes and the shortest path 
solution available within the mazes. The algorithmic problems 
involve: 

1. Generating mazes that stick to the definition of perfect 
maze. 

2. Determining the shortest path available between two 
given points within the generated maze. 

This paper focuses on analyzing and presenting algorithmic 
solutions for this problem. We will study how minimum 
spanning trees and graph traversal algorithms help in generating 
and solving a perfect maze. 

B. Problem Solution 
This section presents the algorithmic solutions that address 

the problems defined before. We use the principles of graph 
theory, trees, and specific minimum spanning tree algorithm 
and graph traversal algorithm to systematically generate these 
mazes and efficiently determine optimal solutions within them. 

1) Perfect Maze Generation 
The problem of generating a perfect maze is characterized 

by connectivity and the absence of circuits. This problem is 
effectively solved by generating a spanning tree from the initial 
grid graph. Each cell in the grid represents a vertex and the 
potential passages between adjacent cells represent edges. By 
selecting a subset of these edges that form a spanning tree, we 
guarantee that every cell is reachable from every other cell and 
that no redundant paths exist. We use Prim’s algorithm for this 
maze generation. 

The Randomized Prim’s Algorithm solves the maze 
generation problem by iteratively growing the maze from an 
initial starting point basically adapts Prim’s minimum spanning 
tree algorithm by changing minimum weight edge selection 
with random edge selection. The algorithm keeps a set of cells 
that is already part of the maze and a list of walls that connect a 
cell inside the maze to an unvisited cell outside it. Initially, an 
arbitrary starting cell is chosen and marked as part of the maze. 
All the walls that are adjacent to the starting cell are then added 
to the list of walls. In each step, the algorithm repeats by 
selecting an arbitrary wall from the list. The chosen wall 
connects a cell that is already part of the growing perfect maze 
to a cell that has yet to be visited. If the selected wall connects 
a visited to an unvisited cell, it will be removed and create a 
passage. The cell that is yet to be visited is then added to the set 
of maze cells. All adjacent walls from this new cell to its 
currently unvisited neighbors are then inserted to the list. This 
execution is iterated until the list is empty, indicating that all 
cells have been added to the maze, forming a single connected 
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component without any circuits. The result is guaranteed to be 
a perfect maze. 

2) Maze Solving 
The complexity of solving a perfect maze is significantly 

reduced compared to general maze solving, we are guaranteed 
a unique path between any two points. We use breadth-first 
search for this problem. 

Breadth-first search primary advantage in this problem is 
that it always finds the shortest path from the entrance to the 
exit. This happens because breadth-first search checks all 
possible paths at a certain distance before moving deeper. In a 
perfect maze that has a unique path between any two points and 
no circuits, breadth-first search reaches the exit point with the 
minimum number of steps. 

IV. IMPLEMENTATION 
The implementation of the problem solution is written in 
Python, chosen for its simplicity and extensive support for 
scientific computing and graphical visualization using its third-
party packages NumPy and Matplotlib. I will present the 
algorithmic notation of each function created for the 
implementation. However, readers can access the full Python 
code implementation at Application of Minimum Spanning 
Trees and Graph Theory in Generating Perfect Mazes - IF1220. 

A. Perfect Maze Generation 
1. CreateGrid(w, h) 

This function initializes a two-dimensional grid 
𝑒𝑒 × ℎ where each cell’s value is set to 1. The width w 
and height h are set to be odd numbers to keep a 
consistent structure of walls and passages that is 
necessary for perfect maze. 

function CreateGrid(w, h) → array [0..(h-1)] 
of array [0..(w-1)] of integer 
{Specification: Initialize each cell’s value 
with 1 and return it as a NumPy two-
dimensional array.} 
 
ALGORITHM 
→ np.ones((h, w), dtype=int) 

 
2. GetWalls(x, y, grid) 

This function fetches the list of walls two steps 
away in four cardinal directions (north, south, east, 
west) that have the possibility to connect to cells yet to 
be visited. For each wall, it records the intermediate 
wall’s coordinate, which can be taken out to connect 
cells. 

function GetWalls(x, y, grid) → array 
[0..(CAPACITY-1)] of tuple [0..3] of integer 
{Specification: Returns a list of walls adjacent 
to (x, y) that lead to unvisited cells.} 
 

ALGORITHM 
directions ← [(-2, 0), (2, 0), (0, -2), (0, 2)] 
walls ← [] 

for (i, j) in directions do 
      xf ← x + i 
      yf ← y + j 
      if (0 < xf < grid.shape[1]) and (0 < yf < 
grid.shape[0]) and (grid[yf][xf] = 1) then 

        xt ← x + i // 2 
        yt ← y + j // 2 
        walls.append((xf, yf, xt, yt)) 

→ walls 

 
3. GenerateMaze(w, h) 

The main function for the Randomized Prim’s 
Algorithm. The steps are: 
a. Initializes the grid by calling CreateGrid() 

function. 
b. Chooses an arbitrary starting point using Python’s 

random library. 
c. Extends the maze by iteratively choosing and 

removing walls that connect visited and unvisited 
cells. 

d. Guarantees the result is a perfect maze. 
e. Inserts an entrance and exit to the maze. 

function GenerateMaze(w, h) → array [0..(h-
1)] of array [0..(w-1)] of integer, tuple [0..1] 
of integer, tuple [0..1] of integer 
{Specification: Generate a perfect maze and 
returns its lists, entrance coordinate, and exit 
coordinate} 
 
ALGORITHM 
grid ← CreateGrid(w, h) 
xs ← random.randrange(1, w, 2) 
ys ← random.randrange(1, h, 2) 
grid[ys][xs] ← 0 
walls ← GetWalls(xs, ys, grid) 
entrance ← (0, 0) 
exit ← (0, 0) 
 
while (walls) do 
   wall ← random.choice(walls) 
   x1, y1, x2, y2 ← wall 
   walls.remove(wall) 
   if (grid[y1][x1] = 1) then 
      grid[y1][x1] ← 0 
      grid[y2][x2] ← 0 
      walls.extend(GetWalls(x1, y1, grid)) 

https://github.com/JSNDWRD/Application-of-Minimum-Spanning-Trees-and-Graph-Theory-in-Generating-Perfect-Mazes
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x ← 1 
grid[0][x] ← 0 
entrance ← (x, 0) 
 
x ← w - 2 
grid[h-1][x] ← 0 
exit ← (x, h-1) 
 
→ grid, entrance, exit 

 

B. Maze Solving 
1. SolveMaze(maze, entrance, exit) 

This function is used to solve the generated maze 
using breadth-first search approach to find the shortest 
path solution. 

function SolveMaze(maze, entrance, exit) → 
array [0..CAPACITY] of tuple [0..1] of 
integer 
{Specification: Solve the generated perfect 
maze using breadth-first search and return an 
array of tuple coordinates of the path} 
 
ALGORITHM 
start ← (entrance[0], entrance[1]) 
end ← (exit[0], exit [1]) 
queue ← deque([(start, [start])]) 
visited ← set([start]) 
directions ← [(-1, 0), (1, 0), (0, -1), (0, 1)] 
 
while (queue) do 
      (y, x), path ← queue.popleft() 
      if ((x, y) = (end[1], end[0])) then 
         → [(p[1], p[0]) for p in path] 
      for dy, dx in directions do 
         ny ← y + dy 
         nx ← x + dx 
   if (0 <= nx < maze.shape[1] and 0 <= ny < 
maze.shape[0] and maze[ny][nx] == 0 and 
(ny, nx) not in visited) then 
            visited.add((ny, nx)) 
            queue.append(((ny, nx), path + [(ny, 
nx)])) 
 
→ None 

 

C. Visualization 
1. PlotMaze(maze) 

This function is used to plot the maze using 
Python’s third-party library Matplotlib. 

procedure PlotMaze(input maze: array [0..(h-
1)] of array [0..(w-1)] of integer) 
{Specification: Display generated perfect 
maze using PyPlot from Matplotlib library} 
 
ALGORITHM 
   plt.figure(figsize=(10, 10)) 
   plt.imshow(maze, cmap=’binary’) 
   plt.axis(‘off’) 
   plt.title(‘Generated Perfect Maze’) 
   plt.show() 

 
2. PlotSolvedMaze(maze, path) 

This function is used to plot the maze with its 
solution using Python’s third-party library Matplotlib. 

procedure PlotSolvedMaze(input maze: array 
[0..(h-1)] of array [0..(w-1)] of integer, input 
path: array [0..CAPACITY] of tuple [0..1] of 
integer) 
{Specification: Display generated perfect 
maze with its solved path using PyPlot from 
Matplotlib library} 
 
ALGORITHM 
   plt.figure(figsize=(10, 10)) 
   plt.imshow(maze, cmap=’binary’) 
 
   if (path) then 
       h, w = maze.shape 

yc, xc ← zip(*[(y, x) for (x, y) in path]) 
plt.plot(xc, yc, color=’red’, linewidth=4) 

 
   plt.axis(‘off’) 
   plt.title(‘Generated Perfect Maze with 
Solution’) 
   plt.show() 

3. ShowMaze() 
This function is used to run the overall program by 

calling necessary functions and procedures. 
procedure ShowMaze(input l: integer, input p: 
integer) 
{Specification: Call the necessary functions 
and procedures to run the program.} 
 
ALGORITHM 
output(“Masukkan lebar maze:”) 
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input(l) 
output(“Masukkan Panjang maze:”) 
input(p) 
if (l mod 2 = 0) then 
   l ← l + 1 
if (p mod 2 = 0) then 
   p ← p + 1 
maze, entrance, exit ← GenerateMaze(p, l) 
PlotMaze(maze) 
path ← SolveMaze(maze, entrance, exit) 
PlotSolvedMaze(maze, path) 

 

V. RESULTS 
Given the problem defined before, by running the Python 

program we made, we get: 

  
Figure 7. Generated 15x15 Perfect Maze with Its Solution. 

Adapted from author's implementation. 

  
Figure 8. Generated 65x65 Perfect Maze with Its Solution. 

Adapted from author's implementation. 

  
Figure 9. Generated 121x121 Perfect Maze with Its 
Solution. Adapted from author's implementation. 

 
The plotting of the maze is obtained from the randomly 

generated maze’s cells values by using Python’s third-party 
library Matplotlib using its PyPlot state-based interface. For 

example, the figure seven on this section has the following 
coordinate and solution. 
 

 
[[1 0 1 1 1 1 1 1 1 1 1 1 1 1 1] 
[1 0 1 0 0 0 0 0 0 0 0 0 0 0 1] 
[1 0 1 1 1 1 1 1 1 0 1 1 1 1 1] 
[1 0 0 0 0 0 1 0 1 0 1 0 0 0 1] 
[1 1 1 1 1 0 1 0 1 0 1 0 1 1 1] 
[1 0 0 0 1 0 1 0 1 0 0 0 0 0 1] 
[1 1 1 1 1 0 1 0 1 0 1 0 1 1 1] 
[1 0 0 0 1 0 1 0 1 0 0 0 0 0 1] 
[1 0 1 1 1 0 1 0 1 0 1 0 1 1 1] 
[1 0 1 0 1 0 0 0 0 0 1 0 0 0 1] 
[1 0 1 0 1 0 1 1 1 1 1 1 1 1 1] 
[1 0 1 0 0 0 1 0 0 0 0 0 0 0 1] 
[1 0 1 0 1 1 1 0 1 1 1 1 1 0 1] 
[1 0 0 0 0 0 0 0 0 0 0 0 1 0 1] 
[1 0 1 1 1 1 1 0 1 1 1 1 1 1 1] 
[1 0 0 0 1 0 0 0 0 0 0 0 0 0 1] 
[1 1 1 1 1 1 1 1 1 1 1 1 1 0 1]] 

 
 

[(1, 0), (1, 1), (1, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), 
(5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (4, 9), (3, 9), 

(3, 10), (3, 11), (4, 11), (5, 11), (6, 11), (7, 11), (7, 12), 
(7, 13), (8, 13), (9, 13), (10, 13), (11, 13), (12, 13), 

(13, 13), (13, 14)] 
 

The results shown in this section prove that the 
implementation succeed in generating and solving randomized 
perfect mazes. Each maze is generated such that it contains 
connectivity and no circuits, sticking to the definition of a 
perfect maze. The results also prove the functionality of the 
Python implementation for both the perfect maze generation 
and solving. 

VI. CONCLUSION 
This paper presented an implementation of perfect maze 

generation with its solving by using graph theory, specifically 
minimum spanning trees and graph traversal algorithm. A 
perfect maze, characterized by a unique path between any two 
points and the inexistence of circuits, was successfully modeled 
as a spanning tree of a grid-shaped graph. The Prim’s algorithm 
was utilized to generate the maze structure, guaranteeing 
inexistence of circuits and connectivity. Breadth-first search 
basic approach was also utilized to solve the perfect maze with 
the shortest path solution. Due to the properties of a perfect 
maze, breadth-first search is proven efficient, as it guarantees 
the shortest path solution without the necessity for circuit 
detection. 

The implementation in Python effectively demonstrated the 
generation and solution of the perfect maze with the help of its 
extensive third-party libraries NumPy and Matplotlib. The 
combination of Randomized Prim’s algorithm and breadth-first 
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search produces correct and efficient results with clear example 
of how tree structures and graph theory apply in maze 
generation problem. 

VII. APPENDIX 
Code Implementation: Application of Minimum Spanning 
Trees and Graph Theory in Generating Perfect Mazes - IF1220 
 
YouTube link: Application of Minimum Spanning Trees and 
Graph Theory in Generating Perfect Mazes  
Duration: 6 minutes 38 seconds 
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