
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Application of Minimum Spanning Trees and Graph
Theory in Generating Perfect Mazes

Jason Edward Salim - 13524034
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: jasonedwardsalim@gmail.com , 13524034@std.stei.itb.ac.id

Abstract—This paper explores algorithmic approaches using
the graph theory of minimum spanning tree and basic graph
traversal algorithms for generating and solving perfect mazes. We
will analyze various algorithms including methods like Prim’s
algorithm and breadth-first search and evaluate their properties
in creating solutions. A perfect maze is a specific type of complex
passage network characterized by the inexistence of circuits and a
unique path between any two points with no isolated paths. To
generate such structure, randomized prims algorithm was applied
by treating each maze cell as graph vertex and potential walls as
removable edges. The maze is iteratively generated by connecting
unvisited cells through arbitrarily selected walls. For solving the
generated maze, the breadth first search approach was used due
to its ability to guarantee the shortest path in unweighted graphs.
The entire implementation was conducted in Python, using
NumPy for grid operations and Matplotlib for visualizing the
results. Obtained results prove that the proposed method
successfully generates and solves randomized perfect mazes.

Keywords—graph theory; minimum spanning tree; maze
generation; perfect maze

I. INTRODUCTION
A maze is an intricate and confusing set of connecting routes

in which it is hard to find one’s exit. A maze is related to fields
such as robotics, animal studies, or spiritual and recreational
activities. A perfect maze is defined as a complex network with
inexistence of circuits and a unique path between any two points
with only one possible solution. The layout of the maze itself is
often used as a basic model for various problems related to
pathfinding and navigation.

Figure 1. Maze Example. Adapted from [2].

This paper explores algorithmic approaches using the graph
theory of minimum spanning tree and basic graph traversal
algorithms for generating and solving perfect mazes. We will
analyze various algorithms including methods like Prim’s
algorithm and breadth-first search and evaluate their properties
in creating solutions.

II. THEORETICAL BASIS

A. Graph
1) Graph Definition
A graph G = (V, E) is a mathematical structure that is

consisted of a non-empty set of vertices V and a set of edges E.
In this context, each vertex represents a cell or intersection and
each edge represents a possible route or connection between
two adjacent cells.

Figure 2. Simple Graph Example. Adapted from [1].
2) Graph Terminology
Graphs can be classified into multiple types based on the

properties of their edges. A simple graph is undirected and is
not allowed to have multiple edges and loops. A multigraph is
undirected and is allowed to have multiple edges but no loops.
A pseudograph is undirected and is allowed to have multiple
edges and loops. There exist simple directed graphs, directed
multigraph, and mixed graphs for directed graphs. We focus
mainly on undirected graphs, as the layout of a maze is
undirected, each passage between cells can be traversed in both
directions.

3) Graph Representation
There are several methods to represent a graph:

1. Adjacency Matrices

mailto:jasonedwardsalim@gmail.com
mailto:13524034@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The adjacency matrix A of undirected graph G is a
zero-one matrix with 1 as its (i, j)th entry when 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗
are adjacent, and 0 if otherwise. If A is = [𝑎𝑎𝑖𝑖𝑖𝑖], then

𝑎𝑎𝑖𝑖𝑖𝑖

= � 1, 𝑖𝑖𝑖𝑖 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑖𝑖� 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑖𝑖 𝐺𝐺,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒.

 (1)

For example, the graph in figure 2 adjacency matrix is:

⎣
⎢
⎢
⎢
⎡
0 1 1 0 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 1
1 0 1 1 0⎦

⎥
⎥
⎥
⎤

with ordering of vertices a, b, c, d, e respectively.

2. Adjacency List
The adjacency lists of undirected graph G is a lists of

vertices that are adjacent to each vertex of the graph. For
example, the adjacency lists for the graph in figure 2 are:

Vertex Adjacent Vertices

a b, c, e

b a

c a, d, e

d c, e

e a, c, d

3. Incidence Matrices

The incidence matrix of undirected graph G is a zero-
one matrix with 1 as its (i, j)th entry when 𝑣𝑣𝑖𝑖 and 𝑒𝑒𝑖𝑖 are
incident, and 0 if otherwise. If M is = [𝑚𝑚𝑖𝑖𝑖𝑖], then

 𝑚𝑚𝑖𝑖𝑖𝑖 = �
 1, 𝑒𝑒ℎ𝑒𝑒𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑎𝑎𝑜𝑜 𝑒𝑒𝑖𝑖𝑜𝑜ℎ 𝑣𝑣𝑖𝑖 ,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒.

 (2)

B. Tree
1) Tree Definition
A tree is an undirected graph that is connected and does not

contain multiple edges or loops. Any tree must be a simple
graph. An undirected graph is a tree if and only if there is a
unique path between any two of its vertices. These properties
align perfectly with the definition of a maze, in which there
exists a unique path between any two given points. Therefore,
a maze can be modeled as a spanning tree over the grid-shaped
graph that represents the grid of cells. This connection forms
the basis for using minimum spanning trees algorithms in maze
generation.

Figure 3. Rooted Tree Example. Adapted from [1].

A rooted tree is a tree where a vertex are acting as the root

and other edges are directed away from the root. A rooted tree
is called an m-ary tree if every internal vertex has no more than
m direct descendants. A full m-ary tree means every internal
vertex of that tree has exactly m children.

2) Application of Trees
Binary search trees is an efficient searching algorithm for

ordered elements. Each child of a vertex is assigned as a right
or left child. Vertices represent elements and are given values
so that the value of a vertex is both bigger than the values of all
vertices in its subtree on the left and smaller than the values of
all vertices in its subtree on the right.

Figure 4. Simple Graph G. Adapted from [1].

3) Spanning Trees and Minimum Spanning Trees
A spanning tree of simple graph G is a subgraph of G that

is a tree containing every vertex of G. Spanning trees of graph
G can be found by removing edges that form simple circuits.

Figure 5. Spanning Trees of G. Adapted from [1].

A maze can be formed into a spanning tree of the grid-

shaped graph. Creating a spanning tree guarantees
connectivity and inexistence of circuits.

A minimum spanning tree in a weighted graph is a
spanning tree where the total values of the edges weights in
the tree is a minimum. A wide variety of problems are solved
using various algorithms for finding minimum spanning trees,
such as:
1. Prim’s Algorithm
procedure Prim (input G: Graph, output T: Tree)
{I.S. G is an undirected graph with n vertices that is
connected and has weights in each of its vertices.}

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

{F.S. A minimum spanning tree of graph G}

ALGORITHM
T ← edge with the least weight in graph G
i traversal [1..(n-2)]
 e ← a minimum-weight edge incident to a vertex
in T
 {e must not form a simple circuit if added to T }
 T ← T added with e

2. Kruskal’s Algorithm
procedure Kruskal (input G: Graph, output T: Tree)
{I.S. G is an undirected graph with n vertices that is
connected and has weights in each of its vertices.}
{F.S. A minimum spanning tree of graph G}

ALGORITHM
T ← empty
i traversal [1..(n-1)]
 e ← any minimum-weight edge in G
 {e must not form a simple circuit if added to T }
 T ← T added with e

C. Graph Traversal Algorithm
Graph traversal algorithms are methods used to visit every

vertex and edge in a graph. These methods are necessary for
various applications such as pathfinding, topological sorting,
and in this context, maze solving. While the previous minimum
spanning tree algorithms are used to generate the perfect maze
structure, graph traversal algorithms provide ways to find the
shortest path from the entrance to the exit point of the maze.

Figure 6. DFS and BFS Illustration. Adapted from [3].

1. Breadth-First Search

Breadth-first search explores all the neighboring vertices at
current depth before it continues to the vertices at the next level.
2. Depth-First Search

Depth-first search explores start at a chosen starting vertex
and explores as far as it can along each branch before going
back to go to another branch. This approach makes it
particularly intuitive for navigating maze structures.

III. PROBLEM DEFINITION AND SOLUTION

A. Problem Definition
A perfect maze is a specific type of complex passage network
characterized by the inexistence of circuits and a unique path
between any two points with no isolated paths. When formed as
a graph, the structure of the maze simplifies certain
computational problems. The main problem in this paper
centers on the generation of perfect mazes and the shortest path
solution available within the mazes. The algorithmic problems
involve:

1. Generating mazes that stick to the definition of perfect
maze.

2. Determining the shortest path available between two
given points within the generated maze.

This paper focuses on analyzing and presenting algorithmic
solutions for this problem. We will study how minimum
spanning trees and graph traversal algorithms help in generating
and solving a perfect maze.

B. Problem Solution
This section presents the algorithmic solutions that address

the problems defined before. We use the principles of graph
theory, trees, and specific minimum spanning tree algorithm
and graph traversal algorithm to systematically generate these
mazes and efficiently determine optimal solutions within them.

1) Perfect Maze Generation
The problem of generating a perfect maze is characterized

by connectivity and the absence of circuits. This problem is
effectively solved by generating a spanning tree from the initial
grid graph. Each cell in the grid represents a vertex and the
potential passages between adjacent cells represent edges. By
selecting a subset of these edges that form a spanning tree, we
guarantee that every cell is reachable from every other cell and
that no redundant paths exist. We use Prim’s algorithm for this
maze generation.

The Randomized Prim’s Algorithm solves the maze
generation problem by iteratively growing the maze from an
initial starting point basically adapts Prim’s minimum spanning
tree algorithm by changing minimum weight edge selection
with random edge selection. The algorithm keeps a set of cells
that is already part of the maze and a list of walls that connect a
cell inside the maze to an unvisited cell outside it. Initially, an
arbitrary starting cell is chosen and marked as part of the maze.
All the walls that are adjacent to the starting cell are then added
to the list of walls. In each step, the algorithm repeats by
selecting an arbitrary wall from the list. The chosen wall
connects a cell that is already part of the growing perfect maze
to a cell that has yet to be visited. If the selected wall connects
a visited to an unvisited cell, it will be removed and create a
passage. The cell that is yet to be visited is then added to the set
of maze cells. All adjacent walls from this new cell to its
currently unvisited neighbors are then inserted to the list. This
execution is iterated until the list is empty, indicating that all
cells have been added to the maze, forming a single connected

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

component without any circuits. The result is guaranteed to be
a perfect maze.

2) Maze Solving
The complexity of solving a perfect maze is significantly

reduced compared to general maze solving, we are guaranteed
a unique path between any two points. We use breadth-first
search for this problem.

Breadth-first search primary advantage in this problem is
that it always finds the shortest path from the entrance to the
exit. This happens because breadth-first search checks all
possible paths at a certain distance before moving deeper. In a
perfect maze that has a unique path between any two points and
no circuits, breadth-first search reaches the exit point with the
minimum number of steps.

IV. IMPLEMENTATION
The implementation of the problem solution is written in
Python, chosen for its simplicity and extensive support for
scientific computing and graphical visualization using its third-
party packages NumPy and Matplotlib. I will present the
algorithmic notation of each function created for the
implementation. However, readers can access the full Python
code implementation at Application of Minimum Spanning
Trees and Graph Theory in Generating Perfect Mazes - IF1220.

A. Perfect Maze Generation
1. CreateGrid(w, h)

This function initializes a two-dimensional grid
𝑒𝑒 × ℎ where each cell’s value is set to 1. The width w
and height h are set to be odd numbers to keep a
consistent structure of walls and passages that is
necessary for perfect maze.

function CreateGrid(w, h) → array [0..(h-1)]
of array [0..(w-1)] of integer
{Specification: Initialize each cell’s value
with 1 and return it as a NumPy two-
dimensional array.}

ALGORITHM
→ np.ones((h, w), dtype=int)

2. GetWalls(x, y, grid)

This function fetches the list of walls two steps
away in four cardinal directions (north, south, east,
west) that have the possibility to connect to cells yet to
be visited. For each wall, it records the intermediate
wall’s coordinate, which can be taken out to connect
cells.

function GetWalls(x, y, grid) → array
[0..(CAPACITY-1)] of tuple [0..3] of integer
{Specification: Returns a list of walls adjacent
to (x, y) that lead to unvisited cells.}

ALGORITHM
directions ← [(-2, 0), (2, 0), (0, -2), (0, 2)]
walls ← []

for (i, j) in directions do
 xf ← x + i
 yf ← y + j
 if (0 < xf < grid.shape[1]) and (0 < yf <
grid.shape[0]) and (grid[yf][xf] = 1) then

 xt ← x + i // 2
 yt ← y + j // 2
 walls.append((xf, yf, xt, yt))

→ walls

3. GenerateMaze(w, h)

The main function for the Randomized Prim’s
Algorithm. The steps are:
a. Initializes the grid by calling CreateGrid()

function.
b. Chooses an arbitrary starting point using Python’s

random library.
c. Extends the maze by iteratively choosing and

removing walls that connect visited and unvisited
cells.

d. Guarantees the result is a perfect maze.
e. Inserts an entrance and exit to the maze.

function GenerateMaze(w, h) → array [0..(h-
1)] of array [0..(w-1)] of integer, tuple [0..1]
of integer, tuple [0..1] of integer
{Specification: Generate a perfect maze and
returns its lists, entrance coordinate, and exit
coordinate}

ALGORITHM
grid ← CreateGrid(w, h)
xs ← random.randrange(1, w, 2)
ys ← random.randrange(1, h, 2)
grid[ys][xs] ← 0
walls ← GetWalls(xs, ys, grid)
entrance ← (0, 0)
exit ← (0, 0)

while (walls) do
 wall ← random.choice(walls)
 x1, y1, x2, y2 ← wall
 walls.remove(wall)
 if (grid[y1][x1] = 1) then
 grid[y1][x1] ← 0
 grid[y2][x2] ← 0
 walls.extend(GetWalls(x1, y1, grid))

https://github.com/JSNDWRD/Application-of-Minimum-Spanning-Trees-and-Graph-Theory-in-Generating-Perfect-Mazes
https://github.com/JSNDWRD/Application-of-Minimum-Spanning-Trees-and-Graph-Theory-in-Generating-Perfect-Mazes

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

x ← 1
grid[0][x] ← 0
entrance ← (x, 0)

x ← w - 2
grid[h-1][x] ← 0
exit ← (x, h-1)

→ grid, entrance, exit

B. Maze Solving
1. SolveMaze(maze, entrance, exit)

This function is used to solve the generated maze
using breadth-first search approach to find the shortest
path solution.

function SolveMaze(maze, entrance, exit) →
array [0..CAPACITY] of tuple [0..1] of
integer
{Specification: Solve the generated perfect
maze using breadth-first search and return an
array of tuple coordinates of the path}

ALGORITHM
start ← (entrance[0], entrance[1])
end ← (exit[0], exit [1])
queue ← deque([(start, [start])])
visited ← set([start])
directions ← [(-1, 0), (1, 0), (0, -1), (0, 1)]

while (queue) do
 (y, x), path ← queue.popleft()
 if ((x, y) = (end[1], end[0])) then
 → [(p[1], p[0]) for p in path]
 for dy, dx in directions do
 ny ← y + dy
 nx ← x + dx
 if (0 <= nx < maze.shape[1] and 0 <= ny <
maze.shape[0] and maze[ny][nx] == 0 and
(ny, nx) not in visited) then
 visited.add((ny, nx))
 queue.append(((ny, nx), path + [(ny,
nx)]))

→ None

C. Visualization
1. PlotMaze(maze)

This function is used to plot the maze using
Python’s third-party library Matplotlib.

procedure PlotMaze(input maze: array [0..(h-
1)] of array [0..(w-1)] of integer)
{Specification: Display generated perfect
maze using PyPlot from Matplotlib library}

ALGORITHM
 plt.figure(figsize=(10, 10))
 plt.imshow(maze, cmap=’binary’)
 plt.axis(‘off’)
 plt.title(‘Generated Perfect Maze’)
 plt.show()

2. PlotSolvedMaze(maze, path)

This function is used to plot the maze with its
solution using Python’s third-party library Matplotlib.

procedure PlotSolvedMaze(input maze: array
[0..(h-1)] of array [0..(w-1)] of integer, input
path: array [0..CAPACITY] of tuple [0..1] of
integer)
{Specification: Display generated perfect
maze with its solved path using PyPlot from
Matplotlib library}

ALGORITHM
 plt.figure(figsize=(10, 10))
 plt.imshow(maze, cmap=’binary’)

 if (path) then
 h, w = maze.shape

yc, xc ← zip(*[(y, x) for (x, y) in path])
plt.plot(xc, yc, color=’red’, linewidth=4)

 plt.axis(‘off’)
 plt.title(‘Generated Perfect Maze with
Solution’)
 plt.show()

3. ShowMaze()
This function is used to run the overall program by

calling necessary functions and procedures.
procedure ShowMaze(input l: integer, input p:
integer)
{Specification: Call the necessary functions
and procedures to run the program.}

ALGORITHM
output(“Masukkan lebar maze:”)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

input(l)
output(“Masukkan Panjang maze:”)
input(p)
if (l mod 2 = 0) then
 l ← l + 1
if (p mod 2 = 0) then
 p ← p + 1
maze, entrance, exit ← GenerateMaze(p, l)
PlotMaze(maze)
path ← SolveMaze(maze, entrance, exit)
PlotSolvedMaze(maze, path)

V. RESULTS
Given the problem defined before, by running the Python

program we made, we get:

Figure 7. Generated 15x15 Perfect Maze with Its Solution.

Adapted from author's implementation.

Figure 8. Generated 65x65 Perfect Maze with Its Solution.

Adapted from author's implementation.

Figure 9. Generated 121x121 Perfect Maze with Its
Solution. Adapted from author's implementation.

The plotting of the maze is obtained from the randomly

generated maze’s cells values by using Python’s third-party
library Matplotlib using its PyPlot state-based interface. For

example, the figure seven on this section has the following
coordinate and solution.

[[1 0 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 0 1 0 0 0 0 0 0 0 0 0 0 0 1]
[1 0 1 1 1 1 1 1 1 0 1 1 1 1 1]
[1 0 0 0 0 0 1 0 1 0 1 0 0 0 1]
[1 1 1 1 1 0 1 0 1 0 1 0 1 1 1]
[1 0 0 0 1 0 1 0 1 0 0 0 0 0 1]
[1 1 1 1 1 0 1 0 1 0 1 0 1 1 1]
[1 0 0 0 1 0 1 0 1 0 0 0 0 0 1]
[1 0 1 1 1 0 1 0 1 0 1 0 1 1 1]
[1 0 1 0 1 0 0 0 0 0 1 0 0 0 1]
[1 0 1 0 1 0 1 1 1 1 1 1 1 1 1]
[1 0 1 0 0 0 1 0 0 0 0 0 0 0 1]
[1 0 1 0 1 1 1 0 1 1 1 1 1 0 1]
[1 0 0 0 0 0 0 0 0 0 0 0 1 0 1]
[1 0 1 1 1 1 1 0 1 1 1 1 1 1 1]
[1 0 0 0 1 0 0 0 0 0 0 0 0 0 1]
[1 1 1 1 1 1 1 1 1 1 1 1 1 0 1]]

[(1, 0), (1, 1), (1, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3),
(5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (4, 9), (3, 9),

(3, 10), (3, 11), (4, 11), (5, 11), (6, 11), (7, 11), (7, 12),
(7, 13), (8, 13), (9, 13), (10, 13), (11, 13), (12, 13),

(13, 13), (13, 14)]

The results shown in this section prove that the
implementation succeed in generating and solving randomized
perfect mazes. Each maze is generated such that it contains
connectivity and no circuits, sticking to the definition of a
perfect maze. The results also prove the functionality of the
Python implementation for both the perfect maze generation
and solving.

VI. CONCLUSION
This paper presented an implementation of perfect maze

generation with its solving by using graph theory, specifically
minimum spanning trees and graph traversal algorithm. A
perfect maze, characterized by a unique path between any two
points and the inexistence of circuits, was successfully modeled
as a spanning tree of a grid-shaped graph. The Prim’s algorithm
was utilized to generate the maze structure, guaranteeing
inexistence of circuits and connectivity. Breadth-first search
basic approach was also utilized to solve the perfect maze with
the shortest path solution. Due to the properties of a perfect
maze, breadth-first search is proven efficient, as it guarantees
the shortest path solution without the necessity for circuit
detection.

The implementation in Python effectively demonstrated the
generation and solution of the perfect maze with the help of its
extensive third-party libraries NumPy and Matplotlib. The
combination of Randomized Prim’s algorithm and breadth-first

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

search produces correct and efficient results with clear example
of how tree structures and graph theory apply in maze
generation problem.

VII. APPENDIX
Code Implementation: Application of Minimum Spanning
Trees and Graph Theory in Generating Perfect Mazes - IF1220

YouTube link: Application of Minimum Spanning Trees and
Graph Theory in Generating Perfect Mazes
Duration: 6 minutes 38 seconds

ACKNOWLEDGMENT
The author sincerely thanks the Almighty God for providing

strength and opportunity to write and finish this paper
successfully. The author would also like to express his sincerest
gratitude for Mr. Arrival Dwi Sentosa, S.Kom., M.T., lecturer of
the Discrete Mathematics class, for his guidance, teachings, and
support throughout the semester. The author gratefully
acknowledges the inspiration provided by Mr. Jamis Buck
through his blog for his insightful method about maze
generation, which helped the author in modifying minimum
spanning trees algorithm and graph traversal algorithm for the
program implementation. Lastly, the author extends heartfelt
appreciation to his beloved parents for their unwavering support,
encouragement, and prayers, which have been a constant source
of strength throughout the author’s academic journey.

REFERENCES
[1] K. H. Rosen and K. Krithivasan, Discrete mathematics and its

applications, vol. 6. McGraw-Hill New York, 1999.
[2] Kjpargeter, “Abstract maze background in black and white,” Freepik,

[Online]. Available: https://www.freepik.com/free-vector/abstract-maze-
background-black-white_155988287.htm. [Accessed: June 15, 2025].

[3] A. Mehra, “Difference between BFS and DFS: a comprehensive guide,”
Medium, 2024. [Online]. Available:
https://medium.com/@sohel.indianreveler/difference-between-bfs-and-
dfs-a-comprehensive-guide-a77b934470fe. [Accessed: June 15, 2025].

[4] J. Buck, “Maze generation: Prim’s algorithm,” The Buckblog, 2011.
[Online]. Available: https://weblog.jamisbuck.org/2011/1/10/maze-
generation-prim-s-algorithm. [Accessed: June 15, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari
makalah orang lain, dan bukan plagiasi.

Bandung, 18 Juni 2025

 Jason Edward Salim - 13524034

https://github.com/JSNDWRD/Application-of-Minimum-Spanning-Trees-and-Graph-Theory-in-Generating-Perfect-Mazes
https://github.com/JSNDWRD/Application-of-Minimum-Spanning-Trees-and-Graph-Theory-in-Generating-Perfect-Mazes
https://youtu.be/3ZDgLHM2gGk
https://youtu.be/3ZDgLHM2gGk
https://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
https://www.freepik.com/free-vector/abstract-maze-background-black-white_155988287.htm
https://www.freepik.com/free-vector/abstract-maze-background-black-white_155988287.htm
https://medium.com/@sohel.indianreveler/difference-between-bfs-and-dfs-a-comprehensive-guide-a77b934470fe
https://medium.com/@sohel.indianreveler/difference-between-bfs-and-dfs-a-comprehensive-guide-a77b934470fe
https://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
https://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm

	I. Introduction
	II. Theoretical Basis
	A. Graph
	1) Graph Definition
	2) Graph Terminology
	3) Graph Representation

	B. Tree
	1) Tree Definition
	2) Application of Trees
	3) Spanning Trees and Minimum Spanning Trees

	C. Graph Traversal Algorithm

	III. Problem Definition and Solution
	A. Problem Definition
	B. Problem Solution
	1) Perfect Maze Generation
	2) Maze Solving

	IV. Implementation
	A. Perfect Maze Generation
	B. Maze Solving
	C. Visualization

	V. Results
	VI. Conclusion
	VII. Appendix
	Acknowledgment
	References

